Time dependence and (non)commutativity of symmetries of evolution equations
نویسنده
چکیده
We present easily verifiable sufficient conditions of time-independence and commutativity for local and nonlocal symmetries for a large class of homogeneous (1+1)-dimensional evolution systems. In contrast with the majority of known results, the verification of our conditions does not require the existence of master symmetry or hereditary recursion operator for the system in question. We also give simple sufficient conditions for the existence of infinite sets of timeindependent symmetries for homogeneous (1+1)-dimensional evolution systems within slightly modified master symmetry approach.
منابع مشابه
Continuous dependence on coefficients for stochastic evolution equations with multiplicative Levy Noise and monotone nonlinearity
Semilinear stochastic evolution equations with multiplicative L'evy noise are considered. The drift term is assumed to be monotone nonlinear and with linear growth. Unlike other similar works, we do not impose coercivity conditions on coefficients. We establish the continuous dependence of the mild solution with respect to initial conditions and also on coefficients. As corollaries of ...
متن کاملA Diffusion Equation with Exponential Nonlinearity Recant Developments
The purpose of this paper is to analyze in detail a special nonlinear partial differential equation (nPDE) of the second order which is important in physical, chemical and technical applications. The present nPDE describes nonlinear diffusion and is of interest in several parts of physics, chemistry and engineering problems alike. Since nature is not linear intrinsically the nonlinear case is t...
متن کاملOn time-dependent neutral stochastic evolution equations with a fractional Brownian motion and infinite delays
In this paper, we consider a class of time-dependent neutral stochastic evolution equations with the infinite delay and a fractional Brownian motion in a Hilbert space. We establish the existence and uniqueness of mild solutions for these equations under non-Lipschitz conditions with Lipschitz conditions being considered as a special case. An example is provided to illustrate the theory
متن کاملOn symmetries of KdV-like evolution equations
It is well known that provided scalar (1+1)-dimensional evolution equation possesses the infinitedimensional commutative Lie algebra of time-independent non-classical symmetries, it is either linearizable or integrable via inverse scattering transform [1, 2]. The standard way to prove the existence of such algebra is to construct the recursion operator [2]. But Fuchssteiner [3] suggested an alt...
متن کاملPolynomial and non-polynomial solutions set for wave equation with using Lie point symmetries
This paper obtains the exact solutions of the wave equation as a second-order partial differential equation (PDE). We are going to calculate polynomial and non-polynomial exact solutions by using Lie point symmetry. We demonstrate the generation of such polynomial through the medium of the group theoretical properties of the equation. A generalized procedure for polynomial solution is pr...
متن کامل